Reduction of cardiac fibrosis decreases systolic performance without affecting diastolic function in hypertensive rats.

نویسندگان

  • Oscar H Cingolani
  • Xiao-Ping Yang
  • Yun-He Liu
  • Mirko Villanueva
  • Nour-Eddine Rhaleb
  • Oscar A Carretero
چکیده

Pressure-overload left ventricular hypertrophy (LVH) is characterized by an increase in myocyte size and fibrosis. However, it is not clear how each of these components affects hypertensive heart disease (HHD). We have shown in 2 different rat models of hypertension that cardiac fibrosis can be reduced with N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), an antifibrotic peptide normally present in mammals. To assess how inhibition of fibrosis affects HHD, spontaneously hypertensive rats (SHR) and normotensive controls (WKY) were treated with Ac-SDKP or vehicle. Cardiac systolic and diastolic function were assessed using in vivo pressure-volume (PV) analysis. Left ventricle passive compliance was also determined ex vivo. We found that in SHR, Ac-SDKP normalized left ventricle total collagen content and interstitial collagen fraction without changing myocyte diameter or left ventricle mass. In WKY, collagen did not change significantly after treatment. Ac-SDKP did not affect left ventricle diastolic function, determined in vivo and ex vivo in SHR and WKY, whereas systolic function was significantly decreased in SHR treated with Ac-SDKP and unchanged in treated WKY. We concluded that in adult SHR, reducing left ventricle collagen deposition with Ac-SDKP does not improve diastolic function, whereas it decreases systolic performance. These findings suggest that total left ventricle collagen reduction per se does not necessarily benefit cardiac function. In HHD, other factors besides collagen quantity, such as myocyte hypertrophy and/or collagen type or cross-link, might be targeted to improve cardiac function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transforming Growth Factor- Function Blocking Prevents Myocardial Fibrosis and Diastolic Dysfunction in Pressure-Overloaded Rats

Background—Excessive myocardial fibrosis impairs cardiac function in hypertensive hearts. Roles of transforming growth factor (TGF)in myocardial remodeling and cardiac dysfunction were examined in pressure-overloaded rats. Methods and Results—Pressure overload was induced by a suprarenal aortic constriction in Wistar rats. Fibroblast activation (proliferation and phenotype transition to myofibr...

متن کامل

Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats.

BACKGROUND Excessive myocardial fibrosis impairs cardiac function in hypertensive hearts. Roles of transforming growth factor (TGF)-beta in myocardial remodeling and cardiac dysfunction were examined in pressure-overloaded rats. METHODS AND RESULTS Pressure overload was induced by a suprarenal aortic constriction in Wistar rats. Fibroblast activation (proliferation and phenotype transition to...

متن کامل

Long-term cardiac pro-B-type natriuretic peptide gene delivery prevents the development of hypertensive heart disease in spontaneously hypertensive rats.

BACKGROUND Diastolic dysfunction associated with high blood pressure (BP) leads to cardiac remodeling and fibrosis and progression to congestive heart failure. B-type natriuretic peptide (BNP) has BP-lowering, antifibrotic, and antihypertrophic properties, which makes BNP an attractive agent for attenuating the adverse cardiac remodeling associated with hypertension. In the current study, we te...

متن کامل

Hypertension Long-Term Cardiac pro-B-Type Natriuretic Peptide Gene Delivery Prevents the Development of Hypertensive Heart Disease in Spontaneously Hypertensive Rats

Background—Diastolic dysfunction associated with high blood pressure (BP) leads to cardiac remodeling and fibrosis and progression to congestive heart failure. B-type natriuretic peptide (BNP) has BP-lowering, antifibrotic, and antihypertrophic properties, which makes BNP an attractive agent for attenuating the adverse cardiac remodeling associated with hypertension. In the current study, we te...

متن کامل

Hypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation?

Excessive myocardial fibrosis deteriorates diastolic function in hypertensive hearts. Involvement of macrophages is suggested in fibrotic process in various diseased situations. We sought to examine the role of macrophages in myocardial remodeling and cardiac dysfunction in pressure-overloaded hearts. In Wistar rats with suprarenal aortic constriction, pressure overload induced perivascular mac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hypertension

دوره 43 5  شماره 

صفحات  -

تاریخ انتشار 2004